сряда, 20 октомври 2010 г.
Гама лъчи
След твърдите рентгенови лъчи идват гама лъчите. Това са високоенергийни фотони, които се генерират при радиоктивен разпад или други реакции с елементарни частици. Те са полезни на астрономите при изучаването на високоенергийни обекти или региони и намират приложение във физиката поради високопроникващата им способност и добиването им от радиоизотопи.
За отбелязване е, че между видовете електромагнитно излъчване няма точно определени граници. Някои дължини на вълните принадлежат едновременно на две области на спектъра. Например червената светлина наподобява инфрачервеното излъчване, при това тя може да въздействува върху някои химически връзки.
За отбелязване е, че между видовете електромагнитно излъчване няма точно определени граници. Някои дължини на вълните принадлежат едновременно на две области на спектъра. Например червената светлина наподобява инфрачервеното излъчване, при това тя може да въздействува върху някои химически връзки.
Рентгенови лъчи
След УВ идват рентгеновите лъчи. Твърдите рентгенови лъчи са с по-къси дължини на вълните от меките. Рентгеновите лъчи се използват за избирателно гледане през дадени обекти (тъкани), както и във високоенергийната физика и астрономия. Неутронните звезди и прирастните дискове около черните дупки излъчват рентгенови лъчи, които позволяват изучаването им.
Ултравиолетова светлина
Следващото лъчение след видимата светлина по честота е ултравиолетовото (англ. UV). Това е излъчване, чиято дължина на вълната е по-къса от дължината на вълната на виолетовия край на видимия спектър.
Бидейки високоенергийно, УВ излъчването е в състояние да разкъсва химичните връзки и така да прави молекулите необичайно реактивни (йонизация), като най-общо променя взаимното им поведение. Изгарянето на човешката кожа на слънце например се причинява от разрушителните ефекти на УВ лъчение върху клетките на кожата, което може да причини дори и рак в случай, че лъчението повреди сложните ДНК молекули в клетките (УВ радиацията е доказан мутаген). Слънцето излъчва голямо количество УВ лъчение, което бързо би могло да превърне Земята в безплодна пустиня, ако по-голямата част от това излъчване не се поглъщаше от атмосферния озонов слой преди да достигне Земята.
Бидейки високоенергийно, УВ излъчването е в състояние да разкъсва химичните връзки и така да прави молекулите необичайно реактивни (йонизация), като най-общо променя взаимното им поведение. Изгарянето на човешката кожа на слънце например се причинява от разрушителните ефекти на УВ лъчение върху клетките на кожата, което може да причини дори и рак в случай, че лъчението повреди сложните ДНК молекули в клетките (УВ радиацията е доказан мутаген). Слънцето излъчва голямо количество УВ лъчение, което бързо би могло да превърне Земята в безплодна пустиня, ако по-голямата част от това излъчване не се поглъщаше от атмосферния озонов слой преди да достигне Земята.
Видимо лъчение (светлина)
След инфрачервените лъчи по честота следва видимата светлина. Това е диапазонът, в който Слънцето и звездите излъчват по-голямата част от своето лъчение. Сигурно не е случайно, че човешкото око е чувствително именно към дължините на вълните, които Слънцето излъчва най-интензивно. Видимата светлина (и близкото инфрачервено излъчване) обикновено се абсорбира и излъчва от електроните в молекулите и атомите, които прескачат от едно енергийно ниво към друго. Светлината, която виждаме с очите си, е наистина много малка част от електромагнитния спектър. Небесната дъга например нагледно показва оптичната (видимата) част на електромагнитния спектър. Ако можеха да се видят, инфрачервените лъчи щяха да са разположени след червеното на дъгата, а ултравиолетовите - преди виолетовия край.
Цвят | Дължина на вълната | Честотен интервал | ||
---|---|---|---|---|
виолетов | ~ 380 до 430 nm | ~ 790 до 700 THz | ||
син | ~ 430 до 500 nm | ~ 700 до 600 THz | ||
синьозелен | ~ 500 до 520 nm | ~ 600 до 580 THz | ||
зелен | ~ 520 до 565 nm | ~ 580 до 530 THz | ||
жълт | ~ 565 до 590 nm | ~ 530 до 510 THz | ||
оранжев | ~ 590 до 625 nm | ~ 510 до 480 THz | ||
червен | ~ 625 до 740 nm | ~ 480 до 405 THz | ||
Непрекъснат спектър![]() Спектър на видимата светлина в нанометри Designed for monitors with gamma 1,5. |
Инфрачервено излъчване
Инфрачервената част на електромагнитния спектър покрива обхвата от приблизително 300 GHz (1 mm) до 400 THz (750 nm). Може да се раздели на три части:
- Далечна инфрачервена област, от 300 GHz (1 mm) до 30 THz (10 μm). Долната граница на този обхват може да се класифицира и като микровълни. Това лъчение типично се поглъща от така наречените ротационни преходи на молекулите в газова фаза, от молекулярните движения в течности и от фонони в твърдите тела. Водата в земната атмосфера абсорбира толкова силно в този обхват, че я прави непрозрачна за тези вълни. Има известни обхвати на дължини на вълните обаче ("прозорци") в непрозрачния обхват, които позволяват частично пропускане и могат да се използват в астрономията. Вълновият обхват от приблизително 200 μm до няколко mm е наричан в астрономията подмилиметров обхват.
- Средна инфрачервена област, от 30 до 120 THz (от 10 до 2,5 μm). Горещите тела (черно тяло) излъчват силно в този обхват. Лъчението се абсорбира от молекулните вибрационни преходи, когато отделните атоми в молекулата вибрират около своите равновесни положения. Понякога този обхват се нарича област на отпечатък тъй като абсорбционния спектър на средното инфрачервено лъчение е твърде специфичен за дадено химично съединение.
- Близка инфрачервена област от 120 до 400 THz (от 2500 до 750 nm). Физическите процеси, характерни за този обхват, са подобни на тези при видимата светлина.
Терахерцово излъчване
Това е областта от спектъра на светлината между микровълните и далечното инфрачервено излъчване. Този вълнов обхват е рядко изследван и съществуват едва няколко източника на микровълнова енергия на високочестотния край на честотната лента (подмилиметрови вълни или така наречените терахерцови вълни). Практически приложения на тези вълни се появяват едва напоследък - в комуникациите и снемането на образи. Предложен е стандарт за безжични мрежи в обхвата.
Микровълни
Свръхвисоките честоти (СВЧ) и ултрависоките честоти на микровълните са след радиовълните в честотната скала. Микровълните са вълни, които са достатъчно къси, за да се осъществи предаването им по тръбовиден (метален) вълновод с подходящ диаметър. Микровълновата енергия се произвежда от електронните лампи клистрон и магнетрон или с полупроводникови диоди като диод на Гън и ИМПАТ диод. Микровълните се абсорбират от молекулите в течности (които имат диполен момент). В микровълновата фурна, този ефект се използва за затопляне на храна. Микровълново лъчение с малък интензитет се използва и при безжичните телекомуникации. Трябва да се отбележи, че обикновената микровълнова фурна може да причини смущения (интерференция) в работата на недобре екранирани електромагнитни устройства като мобилни медицински апарати или евтина потребителска електроника.
Радиочестоти
Радиовълните са с дължини на вълната от стотици метри до около 1 милиметър и се излъчват и приемат чрез радиоантени с подходящи размери (според принципа на резонанса). Те служат за предаване на данни, чрез модулация. Телевизията, мобилните телефони, безжичните мрежи, радиолюбителските комуникации се основават на принципа на предаването и приемането на радиовълни.
Спектър на различни обекти
Почти всички обекти във Вселената излъчват, отразяват и/или пропускат някаква светлина (едно хипотетично изключение може да бъде тъмната материя). Разпределението на тази светлина в електромагнитния спектър (наричано спектър на обекта) се определя от състава на обекта. Могат да се наблюдават два вида спектър в зависимост от природата на излъчването на обекта:
- Ако спектърът се състои от собственото излъчване на самия обект, той се нарича спектър на излъчване или емисионен спектър.
- Частен случай на този е спектърът на абсолютно черното тяло.
- Ако спектърът е резултат от облъчването на обекта със светлина, част от която обектът пропуска, а друга поглъща, той се нарича спектър на поглъщане или абсорбционен спектър.
Връзка между енергия, честота и дължина на вълната
Електромагнитните вълни с определена дължина на вълната λ (във вакуум) имат съответна честота ν и енергия на фотона E. Затова електромагнитният спектър може да се опише еднакво добре като функция на коя да е от тези три величини. Връзката между тях се описва с уравненията:
- c е скоростта на светлината, c = 299 792 458 m.s-1 ≈ 300 000 km.s-1.
- h е Константа на Планк,
.
Електромагнитен спектър
Електромагнитен спектър се нарича диапазонът (обхватът) на всички възможни електромагнитни излъчвания. Също така под електромагнитен спектър (обикновено - само спектър) на даден обект се разбира обхватът на електромагнитното излъчване, който той излъчва (емисионен спектър), отразява, пропуска или поглъща (абсорбционен спектър).
Той обхваща всички възможни честоти - от радиочестоти от няколко херца (дълговълновата граница на спектъра) до честотите на гама-лъчите (късовълновата граница на спектъра), покривайки дължини на вълната с размер от хиляди километри до такива, съизмерими с размера на атомите и по-малки. Твърди се ,че вълни извън тези граници са рядко срещани, което всъщност не е точно така. Например 22-годишният цикъл на слънчевите петна произвежда лъчение с период 22 години или честота 1,4×10-9 Hz. Като пример за другата крайност могат да се вземат фотони с произволно висока честота, които може да възникнат при анихилация на електрони с позитрони с достатъчно висока енергия. Фотони с честота 1024 Hz могат да се произведат със съвременни ускорители на частици. В нашата Вселена границата на късите вълни изглежда е дължината на Планк
(виж Единици на Планк), а на дългите вълни е самата Вселена (виж космология), въпреки че спектърът е принципно безкраен.
Той обхваща всички възможни честоти - от радиочестоти от няколко херца (дълговълновата граница на спектъра) до честотите на гама-лъчите (късовълновата граница на спектъра), покривайки дължини на вълната с размер от хиляди километри до такива, съизмерими с размера на атомите и по-малки. Твърди се ,че вълни извън тези граници са рядко срещани, което всъщност не е точно така. Например 22-годишният цикъл на слънчевите петна произвежда лъчение с период 22 години или честота 1,4×10-9 Hz. Като пример за другата крайност могат да се вземат фотони с произволно висока честота, които може да възникнат при анихилация на електрони с позитрони с достатъчно висока енергия. Фотони с честота 1024 Hz могат да се произведат със съвременни ускорители на частици. В нашата Вселена границата на късите вълни изглежда е дължината на Планк

Свойства на електромагнитните вълни
Електрическото и магнитното поле проявяват свойството на суперпозицията. Това означава, че полето дължащо се на дадена частица или променливо във времето електрическо или магнитно поле се прибавя към полето възникнало от други причинители. Тъй като магнитното и електрическо полета са векторни полета, този процес се свежда до събиране на вектори. Като резултат ЕМИ се се проявява в явления като пречупване и дифракция. Например разпространяваща се ЕМ вълна през специфично разположение на атоми индуцира осцилации в атомите и причинява те да излъчват собствени вълни. Тези емисии взаимодействат (интерферират) с вълната причинител и променят формата ѝ.
При пречупването, вълна разпространяваща се от една в друга среда с различна плътност променя скоростта си и посоката си на разпространение, когато навлезе в новата среда. Отношението на коефициентите на пречупване на средата определя степента на пречупване. Пречупването е механизъм, чрез който светлината се разлага (дисперсия) в спектър, когато премине през призма.
Физиката на електромагнитното излъчване е електродинамиката подобласт на електромагнетизма.
ЕМИ проявява корпускулярно-вълнов характер. Тези свойства са взаимноизключващи се и се проявяват отделно при отделни обстоятелства: вълновият характер се проявява когато ЕМИ се измерва при относително дълги интервали от време и при големи разстояния, а свойствата на частица са очевидни при малки разстояния и времеинтевали. Тези свойства са потвърдени от множество експерименти.
При пречупването, вълна разпространяваща се от една в друга среда с различна плътност променя скоростта си и посоката си на разпространение, когато навлезе в новата среда. Отношението на коефициентите на пречупване на средата определя степента на пречупване. Пречупването е механизъм, чрез който светлината се разлага (дисперсия) в спектър, когато премине през призма.
Физиката на електромагнитното излъчване е електродинамиката подобласт на електромагнетизма.
ЕМИ проявява корпускулярно-вълнов характер. Тези свойства са взаимноизключващи се и се проявяват отделно при отделни обстоятелства: вълновият характер се проявява когато ЕМИ се измерва при относително дълги интервали от време и при големи разстояния, а свойствата на частица са очевидни при малки разстояния и времеинтевали. Тези свойства са потвърдени от множество експерименти.
Абонамент за:
Публикации (Atom)